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ABSTRACT

Differential phase and its range derivative KDP are of interest to several hydrological applications from

weather radar systems. Despite the attractive qualities of polarimetric differential phase measurements, the

usefulness of these radar measurements is potentially undermined as a consequence of measurement fluc-

tuations and physical or beam geometry artifacts. This paper presents an application of linear programming

for physical retrievals, here designed to improve estimates of differential propagation phase by allowing

realistic physical constraints of monotonicity and polarimetric radar self-consistency. Results of the linear

programming methods to the phase-processing problem are demonstrated at several common weather radar

wavelengths (10, 5, and 3 cm).

1. Introduction

Detailed microphysical insights from weather radar

systems are in demand within operational weather

agencies and for the evaluation of numerical weather and

climate prediction models, including the construction of

model forcing datasets. An emphasis has been on polar-

imetric radar technology, as highlighted most recently by

the upgrade of theU.S. NationalWeather Service (NWS)

Weather Surveillance Radar-1988 Doppler (WSR-88D)

network to polarimetric capabilities. Polarimetric sys-

tems promise more robust precipitation products over

conventional weather radar systems with reduced un-

certainty for applications including echo classification,

rainfall rate estimation, and drop size distribution (DSD)

retrievals.

Hydrological product improvements using polarimetric

methods are closely tied to the inclusion of the differential

phase CDP and its range derivate KDP, which are less

sensitive to hail contamination and variation of DSDs,

immune to attenuation in rain, radar miscalibration, and

partial beam blockages (e.g., Zrni�c and Ryzhkov 1996).

Measurements of KDP as inputs to radar algorithms

demonstrate improved accuracy and usefulness of radar

rainfall accumulations (e.g., Ryzhkov et al. 2005b; Wang

and Chandrasekar 2010; Gourley et al. 2010). The KDP

measurements also allow new opportunities for radar

reflectivity factor Z and differential reflectivity ZDR

quality control and relative calibration monitoring using

self-consistency and natural media expectations (intrinsic

properties of rain, e.g., Goddard et al. 1994; Scarchilli

et al. 1996; Smyth and Illingworth 1998; Bringi and

Chandrasekar 2001; Vivekanandan et al. 2003; Ryzhkov

et al. 2005a; Giangrande and Ryzhkov 2005).

Despite the attractive qualities of polarimetric phase

measurements, the usefulness of propagation differential

phase measurements FDP at operational weather radar

wavelengths is lessened as a consequence of measure-

ment noise, unreliability in lighter rainfall and artifacts

stemming from nonuniform beam filling (NBF). These

NBF artifacts can be associated with the (vertical, hori-

zontal) gradients of FDP and Z in the vicinity of stronger

convective cells and in response to changes in the vertical

profile of reflectivity/differential phase near the melting

layer (e.g., Ryzhkov and Zrni�c 1998; Ryzhkov 2007).

Even if differential phase insights are selectively inter-

jected under advantageous regimes, phase-based rainfall
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relations commonly demonstrate undesirable character-

istics (smearing, speckling) and unphysical behaviors

(negative rainfall rates, intrinsic negative behaviors) in

the situations of supposed strength (hail and/or melting

layer; e.g., Giangrande and Ryzhkov 2008). The chal-

lenges are exacerbated at shorter wavelengths, wherein

the expectation for an increased (potentially, more re-

liably sampled) total differential phase shift through

similar rain conditions can be compromised by signifi-

cant contributions from a nonzero differential back-

scatter phase shift d (herein, we adopt the convention;

total measuredCDP 5FDP 1 d). These problems point

to the necessity for robust phase-processing methods

that attempt to deconvole propagation FDP and back-

scatter d phase components, as these components rep-

resent significant independent insights into precipitation

microphysics.

Several methods forCDP,FDP, and/orKDP processing

have been proposed to handle challenges associated

with the aforementioned issues (e.g., Hubbert et al. 1993;

Hubbert and Bringi 1995; Bringi and Chandrasekar 2001;

Ryzhkov et al. 2005b; Wang and Chandrasekar 2009;

Otto and Russchenberg 2011). To be sure, there is no

standard processing or universally adopted approach

within the radar community. It is an error to assume ex-

isting methods as interchangeable and that processing

details do not impact subsequent hydrological products.

Recent examples of this sentiment include Cifelli et al.

(2011), wherein the National Severe Storms Laboratory

(NSSL)KDP processing and rainfall methods, prototypes

for the operational NWS WSR-88D standard, demon-

strate functional however nonoptimal performance as

compared to methods that include KDP inputs follow-

ing Wang and Chandrasekar (2009). As computing

power increases, the ease for incorporating additional

computational complexity to processing routines should

further improve the reliability of fundamental polari-

metric phase measurements. For example, several re-

cent studies have already proposed incorporation of

polarimetric self-consistency behaviors and realistic

physical constraints (e.g., Goddard et al. 1994; Scarchilli

et al. 1996) into more complex or nonlinear schemes

within research and operational settings (e.g., Otto and

Russchenberg 2011; Schneebeli and Berne 2012;Maesaka

et al. 2012).

The U.S. Department of Energy (DOE) Atmospheric

Radiation Measurement (ARM) Program (Ackerman

and Stokes 2003) recently installed several scanning

weather radar networks operating at C-band (5 cm) and

X-band (3 cm) wavelengths. For these systems, there was

immediate demand for open/free source radar processing

codes and community data formats that encourage use

and visualization of DOE ARM radar datasets. As an

example of an early ARM radar processing activity, this

study includes the results for an application of well-

known linear programming (LP) concepts (or linear op-

timization) to the challenge of radar differential phase

estimation. This activity was initiated not only as a func-

tional solution to differential phase processing at ARM

wavelengths but also as a proof-of-conceptmotivation for

similar physical-based LP retrieval applications in the

future. To our knowledge, LP concepts have not been

attempted for radar data processing or physical retrievals

using radar data, with most LP applications limited to

decision making and resource planning in the context of

atmospheric sciences (e.g., Helbush 1968; Minciardi et al.

2003). The present study attempts to construct an LP

method that shares in the desirable measurement prop-

erties sought by existing polarimetric phase-processing

techniques, including (i) an ability tomaintainmonotonic

(nonnegative KDP, e.g., Vivekanandan et al. 2001) be-

haviors in rain and to isolate FDP from d contributions

(extract a monotonic profile), (ii) producing unbiased

KDP estimates, (iii) adopting polarimetric self-consistency

constraints to boost performance in rain regions, and

(iv) the potential to resource external datastreams or

additional constraints for later improvements. This

suggests that our initial methods should share in several

benefits of existing nonlinear variational methods that

have already been proposed (e.g., Schneebeli and Berne

2012; Maesaka et al. 2012), but herein only a simplified

version is offered that is still flexible to handle future

modification.

This study is organized as follows. Section 2 describes

the linear programming solution to a problem of dif-

ferential phase processing. Section 3 presents the results

of our application of LP methods for a simulated radar

dataset at S band (10 cm) and examples collected from

the ARM C-band [C-band scanning ARM preciptation

radar (CSAPR)] and X-band [X-band scanning ARM

precipitation radar (XSAPR)] radar systems in challeng-

ing convective storm environments around north-central

Oklahoma. Phase processing for this study is bench-

marked as compared toNWSWSR-88D phase-processing

standards based on NSSL concepts. These results are

discussed in section 4 and include additional comments

on potential advantages and limitations of LP methods

as compared to a wider array of processing options.

2. Application of LP to estimate differential
propagation phase

This section defines an LP problem associated with

polarimetric differential phase processing. Our goal is to

demonstrate a reasonable LP retrieval for the FDP com-

ponent (having a range derivative KDP), which implies
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that one may estimate d as a residual of this retrieval and

the actual CDP. For the example LP formulation that

follows, a few basic assumptions have been adopted that

are similar to many previous processing efforts.

A monotonic behavior is assumed for propagation

phase FDP profiles in rain (nonnegative KDP). This as-

sumption should be valid below the melting layer and

along radials unaffected by NBF (strong storm ormelting

layer gradients) or significant artifacts from larger hail

(intrinsic negative differential phase behaviors). Invalid

data associated with ground clutter, second-trip echo,

nonmeteorological, and mixed phase hydrometeors (e.g.,

melting layer) should be identified so as to adjust (zero

out) weighting factors or for possible removal. These

problematic gates are identified using polarimetric

threshold criteria (often, highly radar specific) for the

cross-correlation coefficient rHV or the standard de-

viation ofCDP. TotalCDP profiles in this LP formulation

are also expected unfolded and having nonnegative

values.

Profiles of CDP associated with substantial NBF are

challenging for any processing method or eventual KDP

estimation that screens CDP according to rHV thresh-

olds. While not common, the CDP profiles in some ex-

treme instances may become too contaminated for

accurate differential phase processing. SinceZ fields are

less susceptible to NBF (e.g., Ryzhkov 2007), hydro-

logical products in these regions may only be possible

using Z-based or attenuation-based methods.

a. Minimizing the L1 norm

Let b5 fb1, b2, . . . , bng be the differential phase data

array, x5 fx1, x2, . . . , xng be the variables of the ‘‘fit’’ or
processed array, and z5 fz1, z2, . . . , zng be the vari-

ables that appear in the cost function. Each of these

arrays is of length n. To minimize the L1 norm, we have

to minimize

L15 �
n

i51

jxi2bij . (1)

The standard approach to handle the absolute value

(Kiountouzis 1973; Portnoy and Koenker 1997) is to

allow either sign possibility for xi 2 bi by doubling the

number of inequality constraints to two for each vari-

able xi:

z1$x12b1; z1$ 2x11b1
z2$x22b2; z2$ 2x21b2
. . . . . .

zn$xn2bn; zn$ 2xn1bn

.

(2)

The inequalities in row i cover the two possibilities:

(i) xi 2 bi $ 0, in which case zi $ xi 2 bi 5 jxi 2bij and

the second inequality constraint holds trivially (i.e., is

inactive) because2xi 1 bi is either negative or zero; and

(ii) 2xi 1 bi $ 0, in which case zi $ 2xi 1 bi 5 jxi 2 bij
and the first inequality constraint is inactive. In either

case, we have zi $ jxi 2 bij and the minimization of L1 is

equivalent to the minimization of n-term cost function

z1 1 z2 1⋯1 zn. This result shows that minimization of

the L1 norm, Eq. (1), can be achieved using LP by dou-

bling the number of inequality constraints andminimizing

the cost function: z1 1 z2 1⋯1 zn. Note, if inequalities

from Eq. (2) are the only constraints in the problem, then

the cost function reduces to zero with x 5 b.

To set up the LP problem in canonical form, we re-

write the left set of inequalities as zi 2 xi $ 2bi and the

right set as zi 1 xi $ bi, and cast all of these constraints in

matrix–vector form as Axc $ b. The 2n 3 2n matrix A

has block form

A5

�
In 2In
In In

�
, (3)

where In is the n 3 n identity matrix, and the length 2n

vectors x and b are xc 5 fz, xgT, b5 f2b, bgT, and the

superscript T indicates transpose.

b. Monotonicity constraint

For differentiation of discrete and evenly spaced data,

x5 fx1, x2, . . . , xng, we adopt the five-point Savitzky–

Golay (SG) second-order polynomial derivative filter

[e.g., Madden 1978, Table I, Eq. (III)]: f20.2,20.1, 0.0,

0.1, 0.2g. SG least squares convolution filters offer a well-

standardized approach to digital data differentiation,

with an array of filters of different lengths and orders

from which to choose. Reliable KDP determination

requires abstracting reliable derivative estimates from

noisy radar data, and in this first presentation of the

LP–KDP approach, we limit filter testing to the mem-

bers from the SG class. The selection of filter length will

be discussed later in this section. Monotonicity is en-

forced through the requirement that the derivative, so

defined, be everywhere nonnegative. To avoid edges,

the filtering is initiated at the radial position corre-

sponding to xm11 and ended at xn-m, where 2m11 is the

filter length. Thus, monotonicity according to the five-

point filter adds a total of n24 derivative constraints

to the 2n L1 norm minimization constraints already

present. The new constraints are

20:2x120:1x210:0x310:1x410:2x5$0

. . .

20:2xn2420:1xn2310:0xn2210:1xn2110:2xn$0

.

(4)
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The resulting 3n 2 4 3 2n row augmentation of A has

the block form

AAUG5

0
B@

In
In

Zn24,n

2In
In

Mn24,n

1
CA , (5)

where Zn24,n is an (n2 4)3 nmatrix of zeros andMn24,n

is the like-size matrix of monotonicity constraints. Note

from their position in Eq. (5) that inequalities in Eq. (4)

operate only on the x part of xc 5 fz, xgT. The mono-

tonicity constraints, by themselves, can be written com-

pactly as Mn24,nx$ 0, where x is again of length n, 0 is a

vector of zeros of length n 2 4, and

Mn24,n5

0
@20:2 20:1 0:0 0:1 0:2 06 . . . 0n

. . .
01 . . . 0n25 20:2 20:1 0:0 0:1 0:2

1
A . (6)

Here, 0j represents a zero in column j. Vector b is also

augmented by the addition of 0 to its column, that is, one

added zero for each entry on the right-hand side of in-

equalities in Eq. (4). The totality of constraints is then

AAUGxc 2 bAUG $ 0, where bAUG is the augmented

version of b.

c. Setting the primal and dual LP problems and their
solution

The solutions of interest are obtained from the following

LP problem, here called the primal (P) and its dual (D):

P: Minimize c � xc D: Maximize w � bAUG

subject to AAUGxc$bAUG subject towAAUG#c

xc[fz, xgT$0 w$0

The centered dot (�) is the dot product. See Bazaraa et al.
(2010, chapter 6) for a clear description of the relationship

between primal and dual problems inLP. For the primalP,

we require z$ 0, as each of its elements must exceed an

absolute value and thus can never be negative. We also

require the solution array x (differential phase) to be

nonnegative, as indicated above. The length 2n vector of

cost coefficients, c5 f11, . . . , 1n, 0n11, . . . , 02ng, acts in

the dot product to sum the elements of z, as described

above. A useful feature of LP is that c is easily modified to

handle a nonuniform distribution of weights. Figure 1

shows an arbitrary radial of 5-cm CSAPR data with gaps

(blue trace). Here, the cost function was modified by

setting unit weights to zero in regions of ‘‘missing’’ data so

as to give zero weight to those regions. Modified cost

coefficients 12 n are indicated by the black dots in Fig. 1.

FIG. 1. Comparing measurements of differential phase (blue trace) with the LP-processed

result (red trace) along a single radial coordinate. Regions where the differential phase has

been set to zero indicate gaps in the measurements. Right axis and black points: Cost function

coefficients, ci,. These coefficients define the cost function, which is minimized in the linear

program to obtain the red trace. Note placement of zeros in regions where there are gaps in the

measurements, so as to give no weight to these regions in the linear program.
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The red trace in the figure marks the optimal solution for

x from problem P. One immediately notices a significant

level of noise reduction compared to the original data

(blue trace). The modified cost function allows the opti-

mal LP solution to match the original data across gaps

without penalty. Another important property of the op-

timal solution is that it is ‘‘global,’’ in the sense that it is

computed at once for the entire radial trace. This global

property makes the LP optimized solution less pervious

to local variations in the data, like the substantial peak

just beyond the range bin of 600 most likely associated

with d.

For the problemswe have examined, bothP andD have

optimal solutions that can be generated simultaneously

using the simplex method (see below). The fundamental

theorem of linear programming then states these must

have equal objectives (i.e., c � xc 5w � bAUG)—that is, the

minimum cost solution for problem P maximizes

the objective for problemD (Bazaraa et al. 2010, chapter

6). This minimax property provides a quick check on

whether an optimal solution has been found. The array

elements ofw also provide cost sensitivities to changes in

the constraints of P. These and other useful properties of

the dual form can be explored in future studies.

d. Derivative and smoothing filters

LengthL5 2m1 1 SGderivative filters applied in this

study are antisymmetric filters of the form

dn5
n
d2m, d2m11, . . . , d21, d0, d1, . . . ,dm21,dm,

o
.

(7)

Properties of these filters that we will require later are

(Madden 1978)

�
m

i52m
di50

�
m

i52m
idi51. (8)

In applying LP to the analysis of radar data, we require

of the optimized solution that it satisfy the nonnegativity

constraints

D(i)5dmx(i1m)1dm21x(i1m21)1⋯1d0x(i)

1d21x(i21)1⋯1d2mx(i2m)$0 (9)

for all i. Evenwith these constraints in place, however, the

processed signal can still oscillate (see, e.g., the red traces

in Figs. 1 and 2). To understand what is happening, con-

sider the simple three-point filter d3 5 f20.5, 0.0, 0.5g.
For this case the inequalities in Eq. (9) require only that

the odd-numbered element and even-numbered element

subsequences of x be separately monotonic. There is no

FIG. 2. Blowup of range 600 region from Fig. 1 showing original measurements of differential

phase (blue curve) together with the LP-processed result (red curve), and result (green curve)

of applying the five-point smoothing filter to the red curve. Values of KDP (degrees per range

bin), as evaluated by applying the five-point derivative filter to the green curve, are also shown.

For display purposes, theKDP trace has been shifted vertically with the baseline (originally at 0)

now at 20 and amplitude (vertical scale) expanded by a factor of 20 for clarity.
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requirement that neighboring differences, x(i1 1)2 x(i),

be nonnegative. In other words, the processed signal can

still oscillate so long as x(i1 2)2 x(i)$ 0 for i when it is

even or odd. Figure 2 shows similar oscillations resulting

from the five-point filter LP solution more clearly in an

expanded version of Fig. 1 (red trace). Indeed, the LP

solution to L1 norm minimization makes use of such os-

cillations as it tries to match noise present in the original

data so as to minimize the cost function. We will refer to

an LP-optimized signal that satisfies constraintsD(i)$ 0

for all i as being ‘‘weakly monotonic.’’ Although its filter

derivative is strictly nonnegative, such a weakly mono-

tonic trace can still exhibit oscillations on scales shorter

than the filter length.

For any filter, filter width should be roughly twice the

full width at half height of the smallest feature one is

attempting to resolve (Enke and Nieman 1976). For the

typical operational andARMweather radar gate spacing

of ;100m, this implies that a five-point filter is attempt-

ing to resolve features larger than 0.5 km. Longer de-

rivative filters in the LP allowmore leeway for oscillation;

instead of smoothing the optimized solution, more os-

cillations manifest at subfilter-length scales with an in-

crease in filter length. Figure 3 shows results from using

the 25-point derivative filter fromMadden [1978, Table I,

Eq. (III)] for m 5 12. Notice in the gradually increasing

region of differential phase, oscillations in the optimized

trace (red) track noise fluctuations in the measurements

(blue) almost perfectly. In this region, the derivative

constraints tend to be inactive (the derivative is positive

anyway), allowing L1 minimization to take over. Ele-

ments of the dual solution vectorw tend to be zero in this

region as well—illustrating a well-known property of the

primal–dual relationship known in LP as the comple-

mentary slackness condition.

Fortuitously, these subfilter-length oscillations can be

eliminated completely in a single postprocessing step

with the appropriate smoothing filter. For each SG de-

rivative filter, there is a uniquely defined smoothing fil-

ter having the same length. For example, for d3 defined

as above, the smoothing filter is s35 f0.25, 0.5, 0.25g.We

now obtain these smoothing filters for the general case:

sn5
n
s2m, s2m11, . . . , s21, s0, s1, . . . , sm21, sm,

o
.

(10)

Consider the action of sn on two adjacent subsequences

from the LP-processed sequence x:

S(i)5 smx(i1m)1 sm21x(i1m21)1⋯1 s0x(i)

1 s21x(i21)1⋯1 s2mx(i2m)

S(i11)5 smx(i1m11)1 sm21x(i1m)1⋯1 s0x(i11)

1 s21x(i)1⋯1 s2mx(i2m11).

(11)

We obtain the smoothing coefficients fsig from the de-

rivative filter coefficients fdig using the condition

FIG. 3. As in Fig. 2, but showing the LP-processed result (red curve) obtained using non-

negative derivative constraints based on the 25-point derivative filter in the linear program, and

result (green curve) of applying the corresponding 25-point smoothing filter to the red curve.
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S(i1 1)2 S(i)5 sm[x(i1m1 1)2 x(i1m)]1⋯1 s0[x(i1 1)2 x(i)]1⋯1 s2m[x(i2m1 1)2 x(i2m)]

5
1

2

(
[dmx(i1m)1 dm21x(i1m2 1)1⋯1 0x(i)1d21x(i2 1)1⋯1 d2mx(i2m)]1

[dmx(i1m1 1)1dm21x(i1m)1⋯1 0x(i1 1)1 d21x(i)1⋯1 d2mx(i2m1 1)]

)

5
1

2
[D(i)1D(i1 1)]$ 0, (12)

where the final inequality from Eq. (12) is the starting

point and follows from the inequality listed in Eq. (9),

and is a simple weighting of the derivatives evaluated

at the endpoints of the interval under consideration.

Equating coefficients for each of the x(i) and back sub-

stitution gives

sm5dm/2

sm215dm1dm21/2

sm225dm1dm211dm22/2

. . .

s15dm1dm211⋯1d21d1/2

s05dm1dm211⋯1d21d11d0/2

52d2m2d2m112⋯2d222d212d0/2

s2152d2m2d2m112⋯2d222d21/2

. . .

s2m1152d2m2d2m11/2

s2m52d2m/2 . (13)

The second equality of s0 makes use of the first property

of Eq. (8). Finally, it is not difficult to show fromEq. (13)

and the second property of Eq. (8) that the sum of the n

smoothing filter coefficients is unity:

�
m

i52m
si51. (14)

The smoothing filters developed here are very similar to

the standard SG smoothing filters (Madden 1978). They

have the same normalization and same shape, which is

parabolic for the second-order polynomial cases we

show, but they are somewhat broader and shortened in

vertical extent. Differences are to be expected, as the

standard SG smoothers are defined to operate at a single

discrete point, located at the center of the filter, whereas

ours [cf. Eq. (12)] involves differences and averaging

over an interval of two neighboring points.

For the five-point derivative filter used in this study,

d2 5 0.2, d1 5 0.1, d0 5 0, d21 5 20.1, and d22 5 20.2.

Substitution into Eq. (13) gives the corresponding

smoothing filter corresponding to d5 as s5 5 f0.1, 0.25,

0.3, 0.25, 0.1g. The green trace of Fig. 2 results from

applying this smoothing filter to the red trace (LP so-

lution) and shows complete removal of the oscillations.

We will refer to the smoothed trace as exhibiting a

‘‘strong monotonicity’’ condition, whereby monotonicity

is preserved at all scales down to the smallest scale of the

data spacing.

Figure 2 also shows the result of applying the derivative

filter d5 to the smoothed green trace, thereby smooth-

ing the derivative by removing the influence of noise-

matching oscillations in the LPderivative in the sameway

that the smoothing filter removes these oscillations from

x(i). Smoothing, as a postprocessing step applied to the

LP solution, allows the benefits of using longer deriva-

tive and smoothing filters to be realized. Figure 3 shows

similar results for the 25-point filter. Again, Eqs. (13)

have been used to develop a smoothing filter, s25, that

when applied to the weakly monotonic red trace yields

the strongly monotonic green one. Application of d25 to

the green trace yields the correspondingly smoothed

derivative field. Note that these derivatives are pro-

portional to (since the range bins are arbitrary length)

KDP in degrees per kilometer.

e. Self-consistency constraints

One adjustment to improve performance of the opti-

mal LP solution is to incorporate additional physical (or

radar self-consistency) constraints. We introduce one

modification here—that is, to modify the right-hand-

side constraints in P: b $ 0. These constraints ensure

monotonicity, but it follows that modified values may

interject additional insights from reliable polarimetric

radar fields to reinforce whether derivatives (KDP) re-

ceive additional nonzero behaviors (b $ a positive

nonzero value).We suggest a ‘‘steering’’ ofKDP in a self-

consistent manner associated with locations of higher Z,

as in a form bi $ KDP(Zi) 5 aZb. Here, the power-law

coefficients can be modified to provide only weak con-

straints, or to better match theoretical expectations.

Steering with additional weighting factors was found to

quickly improve KDP field behaviors to more closely

resemble only those cell patterns found in Z or to ignore

low Z regions also having low cross-correlation co-

efficient rHV (e.g., redundancy checks for insects, ground
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clutter echo). At shorter wavelengths and as a conse-

quence of attenuation in rain, Z fields may also require

additional processing to include a baseline linear cor-

rection for attenuation in rain that capitalizes on a first-

pass heavily smoothed differential phase profile (or

iterative processing). Note that in situations having

possible hail/mixed phase contamination, care must be

taken to mitigate the associated influence on Z mea-

surements (e.g., Z threshold/cap). Here, we suggest the

influence weighting of Z may be capped at 50–53 dBZ

for the possible presence of hail.

f. Solutions for the LP problem and computational
considerations

Numerical solutions to the LP problem are obtained

using the simplex method of Dantzig (1963). These

methods are available in many popular software pack-

ages and within the open/free source community. Recent

algorithmic approaches to LP, including interior point

methods (e.g., Bazaraa et al. 2010, chapter 8; Portnoy and

Koenker 1997), known to greatly improve computational

speed for certain types of problems, were not tested for

their computational speed at the time of this writing. It

is also noted that computational speed for numerical

solutions to LP problems, including the simplex method,

is contingent on the number of points in the data arrays.

Computational speed behavior was found superlinear for

this study. An ability to perform data array reduction (or

applications on shorter-wavelength systems that typically

imply fewer range gates) can greatly reduce computa-

tional time. Parallelization is an option for the processing

of LP methods as described, since all operations are

performed along single radial arrays.

3. Results

In this section, we provide CSAPR and XSAPR radar

observations following LP–KDP estimation (LP 2 KDP)

as compared to observed polarimetric fields and KDP

processing following NSSL-type smoothing methodol-

ogy (NL 2 KDP, e.g., Ryzhkov et al. 2005b). The ARM

radars provide an interesting challenge since X- and

C-band datasets exhibit strong convective storm cores

with potential d behaviors not observed at operational

NWSWSR-88Dwavelengths. Since NSSLmethods were

not originally intended for application at shorter ARM

wavelengths, the authors have attempted to faithfully

adjust these methods and associated thresholds for the

FIG. 4. PPI images at S-band wavelength (10 cm) for simulated fields of Z andKDP, as well as subsequent processing

of KDP from LP and NL methods.
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ARM systems. The particular ARM radar systems for

use in this study are located near Lamont, Oklahoma.

ARM radars feature radar gate spacing of approximately

100m and a beamwidth of 18. Although advanced clutter

suppression is planned for the ARM radar systems (e.g.,

Bharadwaj et al. 2010), existing ARM datasets require

additional processing to identify echoes contaminated

with insect and ground clutter from hydrometeor-linked

differential phase measurements. This is accomplished

using simple cutoffs to avoid regions having a lower

cross-correlation coefficient and higher along-radial

standard deviations of differential phase (e.g., Wang

and Chandrasekar 2009). For the ARM X-band radar

systems at the time of this study, the data quality was

found at the lower end of research-quality standards as

compared to previous differential phase measurement

expectations at X band (e.g., Park et al. 2005; Matrosov

et al. 2006).

The results of a simulated convective storm radar

dataset at S band (10 cm) are also included to further

evaluate the performance of the LP–KDP and NL–KDP

methods. Here, simulated radar fields provide an op-

portunity to test the LP formulation under ideal butNWS

operationally relevant conditions. At these wavelengths,

we will assume CDP is associated only with FDP and

fluctuation noise, having d5 0. The simulator does not

account for profile behaviors associated with NBF, as

has been previously discussed at S band by Ryzhkov and

Zrni�c (1998). The radar simulator is based on Advanced

Regional Prediction System (ARPS)model outputs (Xue

et al. 2000; Jung et al. 2008a,b) having a conventional

radar emulation for a thunderstorm simulation as viewed

at radar grazing angles and previously outlined inCheong

et al. (2008). The simulation capitalizes on Kessler-type

warm rain microphysics (exponential DSD assumption)

for a 20 May 1997 Del City, Oklahoma, sounding envi-

ronment [as from Ray et al. (1981)] with the radar sim-

ulator expanded to include realistic polarimetric fields at

S band following Lei et al. (2009).

a. Performance with simulated storm outputs

Figure 4 includes simulated plan position indicator

(PPI) images of the model output Z field, as well as a

KDP from the intrinsic radar model output, the NSSL-

based and LP-based processing methodologies. Because

the radar model outputs a KDP field that may be con-

sidered a ‘‘truth’’ field, we have separately plotted the

scatterplot of the LP–KDP and NL–KDP performances

as compared to model truth KDP values (Fig. 5). Note

that from these S-band model examples, KDP values

at maximum are allowed to approach 78 km21 having

Z exceeding 60 dBZ. FromPPI imagery in Fig. 4, allKDP

fields typically demonstrate desirable (nonnegative)

results that match storm hook echolike behavior found

in the Z field. This result is not surprising, since NBF is

not allowed in our model and d is negligible. Thus, fluc-

tuation noise in CDP tends to be readily removed with

smoothing for simulation fields and in regions of high Z.

Negative KDP data regions after processing are limited

and located only at the periphery of the convective cell in

low Z regions.

The suggested LP-based method enforces nonnegative

KDP. For such nonnegative KDP fields, there was

a concern of possible positive bias that might have been

inadvertently interjected to ensure this behavior.

Scatterplots in Fig. 5 reflect that there is no significant

mean bias found between the processedKDP fields. For

regions ofZ. 40 dBZ, the mean bias between the model

and LP–KDP field is found to be 0.18 km21 (over-

estimate). NSSL methods for Z . 40dBZ reflect a nine-

gate smoothing and KDP calculation procedure (assumed

slightly more smeared than LP efforts), exhibits a

0.188 km21 mean bias (overestimate). For typical values

FIG. 5. Scatterplot of Z vs LP and NSSL(NL)-processed KDP

fields (blue) as compared to model-simulated KDP fields for simu-

lation as in Fig. 4. Red dashed curves are provided only as additional

reference lines.
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ofKDP for that interval ofZ, this relative error is towithin

10%. The most visible discrepancy between the methods

occurs at Z , 40dBZ, where it should be stated that the

NSSLKDP is processed using a longer smoothing window

(25 gates) and KDP is generally assumed less reliable for

operational radar applications at S band. Note that the

standard deviations of the LP–KDP and NL–KDP results

are improved as compared to the KDP field from the

simulator, but especially in the case of the LP method.

These results support an initial goal of this study to sug-

gest LP methods as suitable for radar phase processing

without imposing a bias.

b. Performance on observed ARM radar datasets

Figures 6 and 7 include plots of rainfall rates R(Z),

R(NL-KDP), R(LP-KDP) and scatterplots of KDP versus

Z for events viewed by the CSAPR (Fig. 6) and XSAPR

(Fig. 7) radar systems, respectively. The R operation

denotes that Z and KDP values have been converted to

rainfall rate fields (mmh21) for ease in cross comparisons

between the panel images. Rainfall relation operators

follow standard rainfall and Oklahoma-specific relations

found in the literature (e.g., Bringi and Chandrasekar

2001; Gu et al. 2011). For the CSAPR, we use a matched

Oklahoma rainfall rate R(KDP) expression:

R(KDP)525:13K0:777
DP (mm h21) , (15)

and for the XSAPR,

R(KDP)516:93K0:801
DP (mm h21): (16)

Note, theNSSL-basedKDP estimatesmay be negative as

a consequence of fixed radial smoothing windows and

these situations are handled by associating the negative

KDP values with negative rainfall rates comparable to

positive counterparts (e.g., Ryzhkov et al. 2005a,b). For

these plots, Z has been corrected for attenuation in rain

following the methods of Gu et al. (2011) and using the

LP-processed differential phase profiles.

Figure 6 highlights an impressive squall-line event

that developed over north-central Oklahoma on 20May

2011, with values of accumulated CDP exceeding 3008
along several radials prior to complete extinction (Fig. 8).

FIG. 6. PPI images of rainfall rates as calculated atC-bandwavelength (5 cm) forR(Z),R(LP–KDP), andR(NL–KDP).

Scatterplot contains the Z vsKDP behaviors associated with the rainfall rate fields. Event is from the CSAPR radar on

20 May 2011.
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Figure 7 illustrates an isolated severe convective event

that took place on 23 May 2011 and includes several

storms meeting NWS severe thunderstorm criteria for

significant hail (.2 cm) and tornadic activity. Associ-

ated differential phase and Z radials for Fig. 7 are lo-

cated in Fig. 9.

As in the previous simulated radar dataset convective

example at S band, there is an apparent significant benefit

for the CSAPR and XSAPR datasets when switching

to the LP–KDP formulation as compared to NL–KDP. It

should be noted that both KDP-based fields from the

CSAPR event in Fig. 6 offer significant value for rainfall

estimation with noticeably attenuated regions for Z be-

hind the squall line. Note that scatterplot behaviors in

Figs. 6 and 7 still imply Z attenuation corrections did not

always completely recover these fields.

The performance ofR(LP2KDP) is significantly cleaner

for the XSAPR examples in Fig. 7 and in associated

FDP profile retrievals as in Fig. 9, where the greatest

benefit to these methods is argued. The 23 May 2011

event was a significant convective storm outbreak ex-

ample with hail contamination (suggested also by ra-

dials in Fig. 9 featuring cores exceeding 55–60 dBZ). In

addition to larger d contributions near strong cores,

extended nonmonotonic CDP behaviors are more fre-

quently observed at X band, as NBF is proportional to

the gradients of differential phase (e.g., Ryzhkov 2007).

We suggest that the oscillations ofCDP associated with

fluctuation noise, NBF, and d in the vicinity of these

convective cells are not aswell handled by the fixedNSSL

smoothing procedures that also attempt to rely on a rHV

threshold to isolate and/or interpolate over exceptionally

problematic/hail regions. This is a particularly challeng-

ing case, since the low rHV; 0.9 threshold is not sufficient

to properly identify NBF- and/or d-prone regions. From

Fig. 7, NL–KDP and associated R(NL–KDP) fields are

shown in reasonable agreement for high Z . 40 dBZ

regions having stronger polarimetric phase measurement

contrasts. However, these regions exhibit extended neg-

ative KDP regions (decreasing estimated FDP along ra-

dials for several kilometers) in regions having Z .
40 dBZ that are apparently better handled by LP–KDP

method examples. Profile slopes from the offered LP

formulation through stronger storm core regions (Fig. 9)

are consistent and typically do not exceed 78–108 km21.

These slopes correspond to rainfall rates on the order of

70–100mmh21 at XSAPR using the expressions such as

in Eq. (16).

FIG. 7. As in Fig. 6, but for the 23 May 2011 event from the southeast XSAPR (3-cm wavelength) system.
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4. Discussion and conclusions

Polarimetric radar differential phase and its range

derivative KDP are of interest to several hydrological

applications, including rainfall retrievals and drop size

distribution insight. Reducing the uncertainty and un-

physical behaviors often found for these fields can have

a significant impact on the quality of base polarimetric

products of subsequent importance for the forcing of

models and/or model evaluation. This study offers a

unique approach for differential phase processing that

capitalizes on LP ideas and conventional methods for

solving LP problems. The apparent success of thismethod

is encouraging for subsequent radar applications and

improvements of other physical retrieval problems (radar

or otherwise).

Within this study, the LP approach was simple yet

designed to replicate many desirable qualities ofFDP and

KDP behaviors sought by other currently available radar

processing methods. As compared to standard published

methods, the strength of these LPmethods is an ability to

enforce monotonic behaviors if desired. If the original

data array behaves according to the constraint conditions,

then there is no requirement that the data be altered

(smoothed). Additional constraints, including polari-

metric self-consistency, are apparently not difficult to

explore in future iterations of these methods. Our simple

‘‘bounding’’ of this phase problem using (typically) more

robustZ field constraints improves the visual appearance

of theKDP fields. Aswithmore complex and/or published

nonlinear variational methods, there is ultimately a clear

FIG. 8. Select CSAPR radials demonstrating phase-processing

behavior and associated Z fields for the 20 May 2011 event.

FIG. 9. As in Fig. 8, but for select radials from the 23 May 2011

event of the ARM XSAPR system.
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trade-off between method flexibility when applying re-

alistic constraints and the additional computational ex-

pense for LPmethods that scales with the number of data

and constraint equations. Most computational costs were

not found prohibitive for the DOE ARM computing

framework, although ARM’s emphasis is on algorithm

reliability and product quality.

In this LP approach, the monotonicity constraint is

always maintained. Specifically, the optimal solution

includes a small five-point derivative filter length over

whichKDP is nonnegative. This implies that the solution

FDP values at subfilter lengths may still exhibit non-

monotonic fluctuation. Yet, these fluctuations can be

handled by applying the optimal, offsetting smoothing

filter as in section 2 (Figs. 1–3). The nonnegative prop-

erty of our offered LP approach is not necessarily a be-

havior that is strongly enforced within other processing

schemes. Recent exceptions include a nonlinear varia-

tional method wherein this behavior is guaranteed by

applying a cost function to be minimized that includes

a smoothing (low-pass filter) term with a tunable control

parameter (e.g., Maesaka et al. 2012). For many fixed-

length smoothing approaches, as is the case with the

9- and 25-gate options utilized in theNSSLmethod, these

may be coupled to provide monotonic behaviors under

certain conditions and at the longer wavelengths for

which they were originally developed. Yet, Fig. 9 indi-

cates that the current NSSL 25-gate ‘‘heavily’’ smoothed

option (approximately 2–3-km window at ARM radars)

is not sufficient to guarantee this behavior and that

a longer filter (or iterative adjustment) would be required

to consistently guarantee this behavior. In this way, even

basic LP methods described in this manuscript suggest

some benefit, since these methods maintain a small filter

length and avoid improper smearing of differential phase

data with range to achieve the monotonic behavior.

The Kalman filter approach recently proposed by

Schneebeli and Berne (2012) appears quite elegant in

design. The presented LP solutions for differential phase

processing and improved phase-precipitation ‘‘map-

ping,’’ however, are not attempting a unified moment or

simultaneous holistic polarimetric radar measurement

improvement as in that approach. The current LP

method descriptions in this study only consider Z mo-

ment behavior (which is corrected for attenuation in rain

using linear methods; e.g., Bringi et al. 1990) as weak

steering for nonzero KDP to range gates of enhanced Z.

Nevertheless, a primary concern for a more holistic ap-

proach in the Oklahoma ARM environment is the se-

verity of the convective storm regimes (likelihood of hail,

NBF) and the associated quality of polarimetric ZDR

measurements at those shorter ARM wavelengths. This

tends to argue for capitalizing on ‘‘relative’’ (nonabsolute

calibration) behaviors as a means to incorporate Z and

ZDR into LP scheme constraints [e.g., adapting constraint

ideas as from Otto and Russchenberg (2011)]. However,

these are topics of future effort and beyond the scope of

the present demonstration of LP methods.
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